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Tests for Sphericity Under Correlated Multivariate
Regression Equations Model

Shakuntala Sarkar and P. R. Krishnaiah

\\\\{ ABSTRACT

JIn this report, the authors considered some tests for sphericity
of the error covariance matrix under a correlated multivariate re-~
gression equations LCMaEf:Ebdel. Asymptotic distributions of the test

statistics associated with the above procedures are also derived.

\

Keywords and Phrases: Sphericity, CMRE model, econometrics, multi-
variate regression.
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1. INTRODUCTION

Extensive research has been done in the past on various problems
connected with the classical multivariate regression model since this
model plays a very important role in many problems like prediction. The
multivariate regression model is nothing but a model with correlated
univariate regression equations with a common design matrix. But, there
are many situations when it is unrealistic to assume that the design
matrices are the same. One such situation is when some of the observations
on certain variables are missing. This situation has been dealt with in the
statistical literature (e.g., see Srivastava (1966) and Trawinski (1961)) to
a limited extent. Another situation is when the design matrices of
different regression equations are not the same but none of the observa-
tions are missing. For example, the same independent variables may not
be good to predict each and every dependent variable.

In the sequel, we will refer to the model based upon correlated
univariate regression equations as the correlated regression equations
(CRE) model. In econometric literature, the CRE model is known as
seemingly unrelated regression equations model. Motivated by applications
in economics, Revankar (1974, 1976), Srivasfava (1970, 1973), Zellner
(1962, 1963) and some other econometricians considered the problem of
estimation of parameters under the CRE model when the underlying
distribution is multivariate normal. Recently, Sarkar and Krishnaiah
(1984) considered the problem of estimation of parameters under the
CRE model when the underlying distribution is elliptically symmetric.
Approximations to the distributions of the regression vector under the
CRE model were discussed in Maekawa (1982) and Kariya and Maekawa

(1982).
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Kariya, Fujikoshi and Krishnaiah (1983) considered a model based
upon two correlated multivariate regression equations and they refer
to it as the correlated multivariate regression equations (CMRE) model.
Under the above model, Kariya, Fujikoshi and Krishnaiah discussed
various procedures for testing for the independence of the two sets
of variables and also derived the asymptotic distributions of the
statistics associated with the above test procedures. But, no work
was done so far on tests for sphericity under the CMRE model.

In this paper, we discuss asymptotic distributions of various
test statistics for sphericity under a CMRE model. The likelihood
ratio test for sphericity was derived by Mauchly (1940) when the under-
lying distribution is a multivariate normal with unknown mean vector.
Lee, Krishnaiah and Chang (1977) approximated certain powers of the
likelihood ratio test statistic for sphericity with Pearson's type 1
distribution and the accuracy of this approximation is good for all
practical purposes. 1If we know in advance about the structure of the
covariance matrix, we can take advantage of this knowledge to propose
more efficient estimates of the location parameters and better tests
on these location parameters. So, it is quite important to investigate
the structure of the covariance matrix of the underlying distribution
and the independence of the two regression equations. The results de-
rived in this paper are useful in studying the robustness of the LRT
test for sphericity when the assumption of the same design matrix is

violated under the usual multivariate regression model.
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In Section 2, we give some preliminaries and state the problems that
will be investigated in this paper. Throughout this paper, we use
an estimate of the covariunce matrix which is based upon the residuals
connected with the regression cquations. In Section 3, an asymptotic
expression is obtained for the null distribution of the LRT-like test
statistics for sphericity. When the design matrices of the regression
equations are the same, the above test statistic reduces to the LRT test.
For large samples, the asymptotic distribution of the LRT-like test 1is
chi-square and it is the same as the asymptotic distribution of the LRT
test statistic for sphericity when the design matrices of the regression
equations are the same. But, if we take higher order terms, the expressions
for the distributions will be different. In Section 4, we derive the
asymptotic nonnull distribution of the LRT-like test for sphericity under
the CMRE model under [ixed alternatives. The expression obtained involves
normal density and Hermite polynomials. The asymptotic distribution of
the LRT-like test under local alternatives is given in Section 5. The
expression derived in this section involves a linear combination of non-
céntral chi-square variables., The results of Section 3-5 are derived
under the assumption that the underlying distribution is multivariate
normal. In Section 6, we have shown that the results of earlier sections
remain true when the joint distribution of all the observations is elliptically
contoured. Section 7 is devoted to a derivation of the moments of the
estimate of the covariance matrix when the joint distribution of the ob-
servations on each variable is elliptically contoured but we do not assume
that the joint distribution of all observations is elliptically contoured.
In Section 8, it is shown that the asymptotic null distribution of the
LRT-1ike test statistic is a linear combination of chi-square variables
with one degree of freedom when the underlying distribution is as assumed

in Section 7.
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2, PRELIMINARIES

l ~Consider two correlated regression equations
- +
Y1 x].611 El
. (2.1)
.I. Y2 = 12622 + Ez
where the design matrices Xlz n X ) X2: n"r2 are known and are

assumed to be of full column rank. The matrices 611: tlxpl and
l 622: r, sz of the parameters are unknown. We assume that the rows
of E= (EI’EZ) are distributed independently as multivariate normal

with mean vector 0 and covariance matrix I, where

)
= : I £

Ian Iz
5 1
i and zij is of order piij. An estimate of T is nS where

. - Y!Q,Y Y'Q.Q.Y
L 1]
20,9 L%

and

- - % (X! O
Q In xi(xixi) xi. (2.4)

In this paper, we are interested in investigating the asymptotic

null and nonnull distributions of various test statistics associated
with testing the hypothesis HO: T -021 where 02 is an unknown con-
stant.

We now discuss a representation of § which is used repeatedly in
the sequel in deriving some of the distributions. This representation
is due to Kariya, Fujikoshi and Krishnaiah (1983) and it is given in ~ 1

Lemma 2.1,

-
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Consider the transformation

Mi
Wos Y, (2.5)
Ui

where Hl is of order (ro-—ri) xpy and Ui is of order (n-ro) XPpy- Also
Zl: (n-ri) xn satisfies Z;'.Zi= I,,.l.vi.Z,inﬂfQ1 and is chosen in the
following special way.

Let Z;: nx (n—ro) be a marrix satisfying

QO=Z 2, 2% —In , N_=n-r

0“0* “0% ~ Tny Mo 0 (2.6)

+
where Qo= I-X(X'X) X', and X= [XI,XZ] where A+ denotes the Penrose

—

inverse of A. Further, let 5] be the projection matrices onto
L(X) nL(Qj), (j =1{,2) where L(A) denotes the column space of the ma-

trix A. Also, let Ej be a matrix satisfying

-

Z,=1 . (2.7)
Then choose

i - o
2y = (2, 25), 2= (2,0 Zp)- (2.8)

It is casy to verify that

= - b3 .Z Z"
12 n l"o‘rni nri'md 144 0

™~
N
~

[}
[

1’

where Qi is given in (2.4). Note that under Ho, the rows of wi are

independently and identically distributed (i.i.d.) as multivariate nor-

L

mal with mean vector O and dispersion matrix 021‘. . Also, Wl and w2

" i
are distributed independent of each other.
From (2.3) and (2.4) we obtain
L - 4
1

2 - 1
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] 11
wlwl wlzlzzwz
S = =G+8B, (2.9)
L] 1} 1]
WpZaZi W W,
where
L]
u1
G = (ul Uz) (2.10)
1
UZ
] 1]
MM M, KM, -
= = 1 ] *
B , K zlzz. (2.11)
[} 1 [}
MZK Ml MZMZ

These results can be summarized in the following lemma:

Lemma 2.1. The matrix S defined by (2.3) can be written as G+B, where

G and B are defined by (2.10) and (2.11) respectively. Under H, , G is

0
2
distributed as Wp(no, o Ip), where p-p1+p2 and n, =n-r, and row(Mi)
2
is distributed as N, _ 0, 1. __ oI ], 1i=1,2,... vhere M
(rg=7y)py -7 TrgTry Py 1

is defined by (2.5. Also, G and B are distributed independent of

each other under Ho.

3. ASYMPTOTIC NULL DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC

The hypothesis H, can be tested by using the statistic

0

|S|n/2

A= . (3.1)
(tr:S/p)"p/2

When xl-xz, the above statistic is the likelihood ratio test statistic

for sphericity. We will derive the null distribution of T=a.T where

T=~21logA

=n[p logtrS-1log |S| - p log p) (3.2)

1
(
{
{
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and a= (“an)il- under the assumption that K=2'Z =0(1l) as n, +=,

12
Here we note that A is not the LRT test statistic when Xl +X2.

Let
- 6 _ 2
V= /r% (no o Ip)
so that
2 v
G = gl +—),
"ol Tyt =)
0
So
2
S = noo (I+A),
where
A= ( v2 + 32).
noo nOO
Now

log [S| = plog (n002)+1og [T+a|

t:rA).
P

logtrS = log (nocz) +logp+'log (1 +

From (3.2), (3.6) and (3.7) we obtain

1

T-To + -—n— (T1+T2),
0
where
2
Ty == ler v - LEZD
p
20
3
T1=L6 [ 15_1;2_!)_ ~ tr v3]
30 p
__1; _trVerB
T,=-3 (tr(VB) - ————

1.

o 2

0

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)




The characteristic function of T is .

o(t) = E[el® T}
ic T it T
= Ele 01+l Tl}]+E[e 0 it o ]+0(n'1)
Joo 2 0
n n
0 0
-1
= ¢l(t)+¢2(t) +0(n0 ) (3.12)
where
itT
¢.(t) = Efe {1+—— T 11 (3.13)
1 Vo
0
it T
¢,(t) = Efe 0 it T,l. (3.14)
/n—
: 2n
Note that the characteristic function of - —:;— log [ __l_l_in/Z

-1 (trG)
is ¢1(t)-+0(no ) where G’*Wp(no,o Ip). So we know P

that

f/2+ -1

¢1(c) = (1-2it) O(n0 ) (3.15)

where f = (p(p+1)/2) -1

Next we consider ¢2(t). Taking expectations with respect to M; s

only vields

E{tr VB] = E[tr(VllM M+V_ _M'K' M +V KM

M VM 21111y +V,,MM)) )

= 1 1
tr[VllE(MlMl)-+V22 E(MZMZ)]

=g (r0 rl)tr V. .+o (ro rz) trV (3.16)

11 22

E(trB] =E[tr MiM1+tr M! M ]

r,)I_ ]
021)2

2 2
=tr(o (ro-r1)1p1-+c (r
- [oz(ro-rl)pl+02(r0-—r2)p2]. (3.17)

—k




From (3.14)

it T (r,-x,)
0 it 2 1
¢2(t) =E[e = po {p2 tr V11 -p, tr V22}] (3.18)
"o
where

v \')

S s E U ¢
v v iy "1 7}
21 22

Now, note that the limiting distribution of V= (vij) in (3.3) is the

distribution of V= (v, ), where v ~N(0,ol') i#3 and

ij i i3
;ij (i <i)'s are all independent, and that the density f of V can be

b, =
i N@©0,2c6 ), v

expressed as

1 1
FVY=£, (V) +=—F (V) +— £, (V) +...
0 r—no 1 n, 2

where fO(V) is the p.d.f. of V. Next, let

vr = (v, VS, . VR,
1><p2

peeeV )- (3'19)

= (vn,vzz. .o 'vpp’v12" . 'le’v21’ .e 'v2p pl’"" .vpp_'1

*
Then the limiting distribution of V is

N, ©, Do) (3.20)
P

where Do=Diag(204,...,204; 04,...,04).

Further note that

=1 2 L1 2
Ty 7 | ) Vij+;{(p—l)2 V-

v. v .}
200 i#j ) i1 jj]

i#j

, say (3.21)

where A* depends on p.




So,

P

it { 1 1 -1 it * * ® -1
¢, (t)=C —= |expl=- - v (D - A)\?}[p V. -p E V. ]dV +0(n,. )
2 /‘%J 2 . u ua - 2p st 1p 4 1 0
1 1
=0 + 0(nal) (3.22)
Using (3.12), (3.15) and (3.22), we get
o(t) = (l~2it)-f/2+0(nal) (3.23)

where £ = (p(p+1)/2) - 1. VMow, inverting the right side of (3.23)

yields the following expression for the asymptotic distribution of T:
- 2 -1
Pr (T<x) = Pr (xf_<_x) + O(n0 ),
where £ = (p(p+1)/2) - 1

4, ASYMPTOTIC NON-NULL DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC
UNDER FIXED ALTERVATIVE

Let us consider the alternative Hlt not Ho. Since the test sta-

tistic A is a function of the eigenvalues of S, we can assume, with-

out loss of generality, that

L =D = Diag(xl,xz,...,xp). (4.1)

Also, G, B, Mi's. n, are defined as in Section 2.2,

Let
G
Ve=iog (=-D ). (4.2)
n A
0
Under Hl' 'G~wp(nO’DA)' Now
A B
S =n (D, +——+—)
07 vYn nO
0
- nODX(I + A), (4.3)




11

A= (32— Dzlv + ;ll— D;lB)
no 0

log |S| =plogn, + E log A, +log [T+A]
i=1
tr S = ng( ¥ A +ErC), C= (4 D)
i=1 n 0
0
- tr C
= ngPA(L + 22,
PA
where pA = )\l-r...+>\p. Also,

plogtrS= plogn

otPlogp+p log A +p log (1+EEC

—=).
PA
Hence

TP
T=n[log -Q)—--+p log (1+tr ¢

L) - log|14a]].

pPA
=1 1
Now, let
. -Pp
T = /n. [-l-T- log)‘ ]
0 'n A
I
i)
= /ag (p log (1+5E5 “10g [14a|]
pA
=Ty + 1 (T +T,) + O(nal),
/n,.
0
where
P
1 1
Ty =L (Z-3V
O oy M U

(4.4)

(4.5)

(4.6)

4.7

(4.8)

(4.9)

P

—

L amannia.
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1 1
T=§(:——)b .
2 i=1 X Ai ii

The characteristic function of T is
-1
v(t) = Wl(t)'sz(t)-+0(no )

where

ic T

() =Ele @ +itr))
"o
it T
0 it
¥, (t) = Efe =1.1].
2 Ja 2
0
Defining V* as in (3.19), we see that the density of V% {g

2~
px1

/

N ,(0,8) + 0 (na] 2y, where
p -~

2 2
= - . seesA A Aseves .
A Diag(le, ,zxp AIAZ xl p,xz X Apxp-l)
Let
a = G-, 1=1(0p
A i
and

?' = (31,82.---,ap.O,O,...,O).
2
1xp

From (4.8), we know that T, = a'v*., Also from (2.9), Tl can be written

o .=

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

as v*'Qv*, where elements of Q: p2><p2 depend on Al,...,xp and p. Then

from (4.12),

-

Sdendeand

e

Y l PO U G VP e

- -4

)
S iaA 4

itaty* i
wl(t) = Ele (1 + it v Quk) ]
2 n, - -
- e O 3 3 AE<ajxj)3
= @ [1-+1£— tr (QA)+-(1t) §'AQA§-+(iC)* 4 3 1 (4.17)
ﬂo no no




T
T
4,

13

We now consider wz(t). Taking conditional expectation with re-

spect to M,'s only yields

i
Pl E
Ey(T,) = El ) aibii + aibii]

i=1 1=p +1

Py

Y a (r.-r)A, + E a,(r~r. )X

g=1 1 0 177141 i=p1+1 i¥0 2771
Pl E

= (ro-rl)izlaiki + (ro-rz) aiki

1=p,+1

- L 1]
= K (rgsrysrpea,'s,2 's,p)00))

B Kl, say .
Hence
i it a' v¥
¥, (E) =/—t:1<1 E[e’ 2 Y7
n, )
-t a'Aa
it 2 . .
n — Kl e .
/g
Finally, from (4.11), (4.17) and (4.19). we have
22
_thr 3
i -1
we)=e 2 [1+i£-gl+iﬂﬂ—g3]+omo)
"o %o
where
A, '
12=a'Aa =2 E 1 -—l)z
~ 21 X
g = Kli-tr(QA) /
g, = a'AQha + E a3k3 .
A I I T

(4.18)

(4.19)

(4.20)

(4.21)

- e e

1]
IO W v
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Note that under Hl’ 12 # 0, so that inverting the rightside of

(4.20), we have the following theorem for the asymptotic distribution
of T.
I
. . - . = 1 A
Theorem 4.1. The distribution function of T* = T/1 = /x-\; (;T- 1og-Iu—)/r
i

under "1 can be expanded for large n as

(3) -
Pr[fT* <« x] = ¢(x) - :}1:-_ [g] 'h(l) (x)/1 +g3 2—-?(-’9-] + O(nol)

IIO T

h=i where O(J)(x) is the jth derivative of the standard normal distribution

function ¢(x): and gl,g2 and 1 are given by (4.21),

5. ASYMPTOTIC NON-NULL DISTRIBUTION OF THE LRT-LIKE TEST UNDER
LOCAL ALTERNATIVES

We assume the same structure of ¥ as in (4.1), but we consider

local alternatives
H: A =A+—, £=1(1)p (5.1)

where ei's are not all equal. Thus, under HO’

00
D, = ALl + — . (5.2)
A P a.
0 <
= Di ( ooy . N
where De Dlag(ol,)z. Up) Under H0
DG
C~W [n,,(AI + —)]. 5.3)
plng: T, + =] (
1]

Define V as in (4.2), whcre D, is given by (5.2). We then have

A

S = nok(Ip+A), (5.4) j

where A = ((V+DU)/A /;a) + (B/X no). Expanding log |S| and logtrS

in the same way as before, we get

[ N SV P e
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N "
T =~ 2alogh, as—n-il

1
= T + ——(T,+T,), (5.5)
0 Joo 1 72
0]
where .
&rv+E 6)2
T, = -1 [erev)? - p ] (5.6)
0 2A2 0 P )
(cx v+ g ei)3
1 i=1 3
T, = [ - tr(V+D )"] (5.7)
1 3 2 (]
32 p
tr B(trV+ 501)
1 - 1
T2 AZ [er B(V+De) > ]. (5.8)
The characteristic function of T, as before, can be written as
_ -1
(e) = 91 (£) +9,(e) +0(ng "), (5.9)

where ¢1(t), ¢2(t) have the same expressions as in (3.13), (3.14)
respectively.

Now, ¢1(t) + O(nal) is the characteristic function of

D
-2 n./n logl __lgl__]n/Z, where under H,, G~W [n_,(AI +—Q—)], and
0 tr(})p ] p O L
] 0
hence ¢l(t) is known as (see Fujikoshi, 1981)
2,2 1 g -3 ~j -1
9,€6) = v (€587 A1+ — ) A bj(l-git) 1+0(ay") (5.10)
n. j=0
0

where wf(t;A) is the characteristic function of a noncentral x2 var-

iable with f d.f. and noncentrality parameter 62/X2, and

¢ . o2 (p-1)

2 ?

2 1 2 -1 2
§" = ler Dy - p “(tr DO) ] 3

1 3 -1 2 -2 3
bo = 6[2 teD ~3p (tr Do)tr De+p (tr De) ]
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3

.
b, = 2{ trDU

-1 2 -2 3
+2p “(tr Do)tr D, - P (tr De) }
1 3. -1 2., -2 3
b, = 6{tr D0 3p (tr DO) trD0-+2p (tr De) }.

Next consider ¢2(t).

Taking conditional expectations with respect to M,'s only we

i
have
(r.,-r.) - -
2 1 -1/2
B ——— - -+ .
Er&TZ) o [p2 tr V11 P tr V22] O(no ) (5.11)
where
- \'j v
V= (V4D ) = ~11 ~12
o v.. Vv
21 22
vlj: piij. Writing V = (vij)' see that
= + = cee
Vii vii ei’ i=1,2, P
vij =vﬁ, i#73.
As before, we write T, = - v*¥'A_v*, where
0 . 0.
2
y*' = (Vf»vg,---.V*z)
2
1xp
= (v v 2
(vll"°"vpp’v12""’le""’vpl""’vpp-l)' (5.12)

and Ao is a function of A, and p. Further note that,

~ %
E(y ) =u

Mo (5.13)

Var(v*) = 4, (5.14)

where

Py
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E' = ( 1 -.Op; o, »0), (5.15)
IXPZ
and 4 is given by (4.14) and (5.1)
Since Ai =\ + 0(—1— ),
"o
2 2 .2 2

8 —2> Dy = Diag(2)’,...,.22%0%, ... 0. (5.16)

2
11 ~NCOL22T),

(i<j)'s are all independently distributed.

The limiting distribution of V is that of Z==(zij) where 2

2 L g .
zij F(O,A ), i#j and 2

Hence, for large n

i}

~

Y*NN 2(“69 DO)’ (5-17)
P
where Mg and Do are given by (5.15) and (5.16) respectively.
Hence
29% A% ~ 2(vx-p ) D7t (gr-u )
(r,-r)) pit/ 24 Ag¥* =5 (¥*=ug) "Dy 0
1 *277)0 i v 0
¢2(t) = > 173 3 e c'vk  duw
(/70 |y | P g ! -0 =
where
¢', = (p,e! ,-p,e' ,0¢', ) (5.18)
1xp 2~pl 1~p2 pz-p
(r,~r.)
27517 ic it -1/2 1, -1
Y P lT- 32 DoAo! exp|( 2(geD U=Vt v o) le'vy
0 (5.19)
where
-1 it -1
Q= (D, - 2 Ay (5.20)
-1
Vo = 9D ¥
= Z 1552— DADT u (5.21)
00 8
r=0 A -

S

b .




»
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and ¢ i{s given by (5.18). Note thae

-1 -1
v - vy
("u' T .Yu‘ -\-’U)

=l ) T (AN )r]l)al

Using (5.21) and (5.22) {n (5.19) we have

(r, = r))
2 I
4 (0) = ——
PA ‘fnu—

e |1 - \/ oM U]

.(5

~ r=0

- r
- ';‘%‘ti L";':‘(‘o"o’r“’al

12

(1:) Ao)rfo)‘

6. THE DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC WHEN THE JOINT
DISTRIBUTION OF OBSERVATIONS IS ELLIPTICALLY CONTOURED

We will first discuss briefly elliptically contoured distributions.

by- (5.22)

uol

If the random vector x: p x 1 has the characteristic function of the

formexp(i t' ) ¢ (' % t) where u and t are of order p x 1, then x is said

to be distributed as elliptically contoured distribution and is denoted by

EC(u,IL;¢). Various properties of ellivtically contoured distributions are

discussed in Anderson and Fung (1982), Cambanis, Huang and Simons (1981)

and Kelker (1970). Now, let
]
)

E = (gl,...,g—n) = .

¢’ (n)

where €' = (vecE')' = (ezl)""’ezn))' We assume that
S? np(0 1 ﬁ I*; ¢) and T* is proportional to I given by (4.1).

Then, 1t is known (see Cambanis, Huang and

Simons(1981) and




LA

Y

.,
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Anderson and Fang (1982)) that

d

E=RUA,

(np)' distribution

where A'A = X%, A : pxp, U :nxp, Vec. U = u
function of R 1is related to ¢ and R Ls independent of U; here ‘ﬁnp) is
np-dimensional column vector which has uniform distribution on

the unit sphere. In addition, "X d Y" denotes that the

distribution 'of X 1s the same.as that of Y. Let us

d
write A = (Al AZ)’ P = + p,. Then we have El =R U Al' Ez d RU Az.
nxp, nxp
1 2
Since
A N ] :
Bl EjQpRpE,
S = (6.1)
Dl " []
Fa0Q By E3Q,E,
ve get
trS = ex(E}Q,E, + ESQ,E,)
(l 2 L] [} ty1?
ROtr(AU QUA, + AU QZUAz) (6.2)
and

s s (F -yl
Is| = |EJQ E,||EYQ,E, - ESQ,0, K (EjQE,)7 E}Q,Q,E,|

‘,l. 2P) .0 ' ) S
R IAlU'QlUAIIIAZU'QZUAZ = AJU'Q,Q UA; (AJU'Q,UA|) AIU'QlQZUAZI
(6.7)

Hence

' "lvv
Is| 4 IA"U'QIUAlllA,’Zu'QZUA2 - AJU'Q,QUA, (AJU'Q UA,)" AU QlQZUAzl

(trs)P [er(A{U'QUA, + AJU'QUA]" 6

Substituting this we see- that A is independent of RZ. Hence the distri-
bution of A will be the same as in the normal case, Thus the asymptotic
null and nonnull distribution of A under assumption (6.1) is the same as

in earlier sections,

b, ettt i,
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7. MOMENTS OF THE ESTIMATE OF THE COVARIANCE MATRIX WHEN OBSERVATIONS ON

EACH VARIABLE ARE ELLIPTICALLY CONTOURED

In this section, we assume, instead of (6.1), that the covariance matrix

of €' 1s Z & I where £ 1is given by (4.1), e' = (ei,...,e;) and
" * .
33 ECn(O. Ajln’ ¢)

where X; « Aj' J=1,...p.

It can be veriflied easily that

(7.1)

(7.2)
(7.3)
(7.4)

(7.5)

E(ejAe,) = -20'(0) MjtrA
E(giAgj) =0,14]
, . 2.2 2 . 2..,2 % 2
Var(ejAe,) = 8 ¢' (0) 2 tr A” + 12(4"(0) - ¢"(0))2} 121611-
for A = A' = (aij)
n
] = " 2 2 2
Var(ejAe,) = 4 AA3(6 (0)? ag, + ¢ (0 z;ja“ 1.1 ¢4,
Note that S = E'E
\
L L}
ej0e; - - - 21U, U 41 - 0 - U
e' & e.. . .e' Qe e' ) e | . e’
e %, 1%, %, %% 41 %, 01%2%
' ’ .
%o, #1208 % 1%, ISR L B MR
1] ‘ L} L L
(%% - - HRUS, Hh%H 41 0 Hh
Hence we have /
- ' -
Esy,) _i 20" (O)Mny,  1=1, 2,....p

-2¢'(0)X;n2. 1= pf+l,....p
vhere
ﬂl'n—flnnz-“-rz

E(sij) =0, 1+4].

(7.6).

a.7)
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8¢'(0)2A*2nl + 12(¢"(b)2)x* Y q(l)z,
1 1=1
i=1,2,...,p
Var(Sii) = /\ 1
Pooset @2, + 12(6"0)~" (00) 20 ) D2
V i=1
\\.__ i=pl+l’°"’p
vhere Q, = (qi(;)), Q, = (qi(?)
. x*x*[«p"(m{q‘m + ' (0) 52 w2
Lj=lﬁ.u-m1;iﬁ
A*X*[¢"(0>Eq(2)2 + $'(0) ZZ q(2)2
Var(s,,) =
ij
| i,j=p1+1...,p;i#j
/ 4%*)‘*[¢"(0)Zq(3)2 + ¢|(0)zz q(3)2
]
(._ i=1.2,---,P1; j’Pl"'l,---oP
or i=p1+1,...,p; j==1,2,...,p1
where QIQZ (qii)
" co2hr. (1)2
(" apge@ -0 @ )9
-9j =1 2 pl; i#j
(2)2
_ AR (0)-4" (0) )Zq
COV( ii, Jj) =
i,J’Pl+1s--o,P3 i#j
AR (8" (0)=0" (V) )Zq(l) o
\— 151,2,---,P1’ j’P1+1;---.P-

(7.8)

(7.9)

(7.10)

PPN YRR I

~




For simplicity of notation, let

rl=r2=r => nl=n2=n0, say
where n0 = n~-r,
Hence
Sy _ ni
E(no) Dlag(xl,...,xp) (7.11)
where Ai = -2¢'(0)>\§, i=1,2,...,p
Let us define
S
Z = "EE‘TO’DA)' (7.12)
Then
E(Z) =0 (7.13)
pxp
(7 80r @7 + 12(6"(0)-¢" @ P)2g Z %y
\
i=1,2,...,pl
Var(z ,,) = < (7.14)
i (2)2
80t ()% + 126"(0)-4" (0) et 5 a;y Ing
(__ i= l+1 sP
(_ 4)\*)\*[¢"(O)X q(l)2 0+¢'(0)ZZ§ q(1)2/n ]
Qa
)\ i,] =1(1)p1; 143
" (2)2 ' 2 (12
Var(z,,) = arpryle (oﬁq ng ' (0 E; Yop /Mol (7.15)
\
/ 1,3=py+l,...,p; 143
[ eapgteo] a{P2mg + 01 @71 alP%ny)
1 Q#
L isl(l)Pl; j=pl+li""p T

or i=pl+l,...,p; j= 1(1)pl




ARG (0) -4 (0) )Z D2,

i,j=l,2,...,p1; i#]

AR (" (@) =0" () 3] q'P/n
Cov(z z )= ij g aa 0

11°%55 (7.16)

B i
,/”\A\\____,-~\

Lj=pf1“-np;i#j

(1) (2),

aa

f
3 AFAE (9" (0)-0" (0) )Z q
1=Mlml;j=%fL.“,m

All other elements of Z are uncorrelated. Now make the following
assumptions on the design mattices Ql’QZ

Each of i qii) (2)/ X éi)z/no. §=1,2,3 and §J qig)zlno,

a=1 a=1 a#$B
j=1,2,3 are of 0(1) and we write for large n

) q(j)2/ 3

a 0 1 3 j=1’293
17 088 my = k7, 5=1,2,3
a#B (7.17)
and
(l) (2)
X Qe Yaa / 3 ‘

Note that the limiting distribution of Z is the same as that of

Z = (zij)’ where

- 2
zii N(0’2Ai¢)’ (7.18)

Zij’"N(O,AiAjw), i #.j (7.19)

where

ik

.
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(_ 1+ 'g-(‘b"(O)/'b'(O) 1)1<(1)
¢ = (/ i= 1,2,...,p1 (7.20)
\
! 1+ 26" /8" @ -1x{?
—
i=p1+1,...,p
and
/- "
| (P O Dy gy,
‘ ¢' (0)
/ (2) 9"(0) (2)
= [k I, i,i=p,+1,...,p
v <% 2t o2 Ky 1 (7.21)
[K§3) +M)_ (3)]. i=1(1)p, j-pl*'i,---.P
¢' (0)
j'l(l)ply 1‘P1+1,---nP-
Also,
- - . "o _
Cov(zii,zjj) Alxj(fjfgf—- 1)C, i#j (7.22)
wvhere
.
(1)
VKT, L= 1Dpy
C = KEZ) . 1.3 = ple.p (7.23)

Ky » &= 1(1p;i § = pyHl...up.

All other elements of Z are uncorrelated.
It is known that, all fourth order cumulants, if they exist, can

be expressed as a function of a single parameter, k, which characterizes

the kurtosis of the distribution.

For £ as in (4.1), the only nonzero fourth order cumulants of the
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elements of E are

1 4 2
K, = E(e,) - 32 g = 1(1)n
- 3,\2(9-'19-2-5 -1, 1i=11p
¢'(0)
15 ., 2.2, 2 2
ky, = Elegep,) = Ele,)E(ey )
= &0y g - 1),

i3 ¢'(0)
i,j = 1QQ)p, 1 # 3.

i,.2
All other fourth order cumulants of eij's vanish. Note that KAIAI,

is the kurtosis of the marginal distribution of ith component, and
for convenience define KZ/A% = 3k, 1 = 1 Q)p; where k characterizes
the kurtosis of the distribution. It is clear from above that

k = (95'59-)5 - 1), so that
¢'(0)

1,1 _
KZZ )\ikjk.

The parameters in the asymptotic distribution of Z can be expressed

as functions of k and Ai's only.

8. ASYMPTOTIC NULL DISTRIBUTION OF THE LRT-LIKE TEST STATISTIC WHEN THE
OBSERVATIONS ON EACH VARIABLE ARE ELLIPTICALLY CONTOURED

Let S0 = S/no, then from (7.12), we have

Sg =D, + 2/, (8.1)
5o a2
The LRT-1ike test statistic for sphericity is A = [————]"' %,

P
' (tr Sy/p)
We are interested in the asymptotic distribution of T m» -21lqg A, Sup-

2
pose, under Ho, Al-...nxp- d”. Then
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2
Sg = 0 (I+A), A = z/oz/rg

loglsol = p log 02 + log|I+A|

tr A

logtr So = log 02+ logp + log (1 + ).

Hence,

trA

T = n[p log(l + —p—) - log|1+Al]l,

~

n n .
let ¢ = ;? T, T? < 1, being the correction factor. Then we have

2
n_ 1 2 (tr2)
T———-4[trz-——p

] + O(nallz). (8.2)
20

So the characteristic function of T is

oCt) = Efel® Ty
ic T
=gle %1+ o0agt/?, (8.3)
where
1 2 (er 2)2
Ty = =3 (er 2® - L2 g (8.4)
20 P
Let us write this as z'AOz, where
15 2= (211""’zpp’212""’zlp;ZZI""’Z2p"'"zpl""’zp(p-l))(8'5)
xp

and AO is a matrix whose elements depend on p and 02. We assume that

the errors are distributed as in Section 7. Then, asymptotically,

z~N ,(0, 9), ) (8.6)
T op
where Q = (w

1j)

wij's are given in Section 7, . with the restriction that kis 02 for

i = 1(1)p. Hence,
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'
1tf AO{

s(t) = Ele ]+ O(nallz)

= J1-21it Aoszl'”z. (8.7)
b

Inverting the rvightside of (8.7), we get
_. Theorem 8,1 The limiting null distribution as no-’OOf T is that of

a lincar combination of chi-squares with one degree of freedom and

the coefficients depending on the fourth order moments of the obser-

vations of the parent population, which are functions of 02 and k.
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